TruSight[™] Oncology Comprehensive (EU)

Una solución en kit para DIV con la certificación CE para la creación de perfiles genómicos completos (CGP)

- Detecte biomarcadores clínicamente útiles en más de 28 tipos de tumores sólidos usando una biopsia mínima del paciente
- Evalúe simultáneamente los biomarcadores actuales y emergentes procedentes de guías de práctica clínica, fichas técnicas de medicamentos y ensayos clínicos
- Proporcione un informe fácil de leer y clínicamente relevante que pueda ayudar a tomar decisiones de tratamiento en 4-5 días
- Conviértase en un proveedor de medicina de precisión ofreciendo las pruebas de CGP en su institución

La revolución del diagnóstico del cáncer

La creación de perfiles genómicos completos (CGP, Comprehensive Genomic Profiling) está cambiando el panorama del diagnóstico del cáncer. Dado el aumento del número de biomarcadores de utilidad clínica, tratamientos aprobados y ensayos de investigación, las pruebas de un solo biomarcador y los paneles de puntos de mayor riesgo oncológico selectivos no logran seguir el ritmo, lo que aumenta las posibilidades de perder información esencial. Además, estos métodos no detectan determinadas firmas de respuesta a la inmunoterapia actuales o emergentes, tales como la carga mutacional del tumor (TMB, Tumor Mutational Burden). Una opción para hacer frente a los retos de una lista cada vez mayor de posibles tratamientos y biomarcadores es la CGP basada en la secuenciación de nueva generación (NGS, Next-Generation Sequencing). En una sola prueba, la CGP proporciona una visión completa de la genética de un tumor, capturando información sobre cientos de biomarcadores, e informa sobre los resultados clínicamente útiles que pueden conducir a regímenes terapéuticos molecularmente compatibles y mejores resultados para los pacientes. 1-6

El hecho de ofrecer una prueba de CGP en el centro proporciona numerosos beneficios, incluida la capacidad de mantener el control sobre la biopsia y los datos del paciente, dándole más poder como proveedor de medicina de precisión y aumentando su participación en el cuidado del paciente. Dicho esto, la CGP puede ser una labor compleja cuando se implementa como

una prueba desarrollada en laboratorio (LDT, Laboratory-Developed Test). TruSight Oncology Comprehensive (EU) (TSO Comprehensive (EU)) facilita esta ardua tarea. Como solución en kit para DIV validada con la certificación CE, TSO Comprehensive (EU) proporciona un flujo de trabajo de CGP optimizado que comienza con ADN o ARN y termina con resultados clínicamente útiles. Todos los reactivos y los procesos de llamadas de variantes están ampliamente validados por Illumina, lo que minimiza el tiempo y el esfuerzo de verificar una nueva solución y simplifica el proceso de implantación.

Sobre TSO Comprehensive (EU)

TSO Comprehensive (EU) es la primera prueba de CGP en kit, para diagnóstico in vitro (DIV), disponible en el mercado que tiene contenido tanto de ADN como de ARN. La solución basada en la NGS analiza simultáneamente 517 genes asociados al cáncer con relevancia clínica conocida en un flujo de trabajo integrado (Figura 1, Tablas 1-4). La prueba incluye reactivos en kit para la preparación de librerías y la secuenciación, así como procesos de software automatizados que identifican las variantes, interpretan los resultados y elaboran informes clínicamente útiles. La secuenciación se realiza en NextSeq" 550Dx System para DIV, que cuenta con la certificación CE. Gracias a esta solución, los laboratorios pueden proporcionar pruebas de CGP que arrojen información actualizada y fiable sobre los biomarcadores relevantes, tal y como se indica en la bibliografía principal, las quías, las fichas técnicas de los medicamentos y los ensayos clínicos, en menos tiempo y usando menos muestras de biopsia que los métodos iterativos actuales.

Secuenciación y análisis de datos completamente automatizados

Figura 1: Flujo de trabajo de TSO Comprehensive: lotes de hasta siete muestras de pacientes y dos muestras de control por experimento usando TSO Comprehensive (EU). Las etapas de preparación y enriquecimiento de la librería duran 2 días. El flujo de trabajo totalmente automatizado en NextSeq 550Dx System secuencia las muestras; realiza la llamada de bases y el control de la calidad, la llamada de variantes y la interpretación; y genera un informe clínico. Todo el flujo de trabajo se completa en 4-5 días.

Tabla 1: Resumen de TSO Comprehensive (EU)

Característica	Descripción ^a
Sistema de secuenciación	NextSeq 550Dx System
Productividad de muestras del paciente	hasta 7 muestras del paciente y 2 muestras de control (1 positivo y 1 NTC (No Template Control)) por experimento de secuenciación
Contenido del panel	 517 genes para variantes pequeñas 23 genes para fusiones 2 genes para variantes alternativas de corte y empalme (MET, EGFR) 2 genes para amplificaciones (ERBB2, MET) TMB y MSI
Tipos de variantes detectadas	 Variantes de ADN SNV, MNV, inserciones, deleciones, amplificaciones génicas Variantes de ARN: fusiones, variantes alternativas de corte y empalme Firmas genómicas complejas: TMB y MSI
Cantidad necesaria de aporte de ADN	40 ng de ADN genómico
Cantidad necesaria de aporte de ARN	40 ng de ARN total
Cantidad necesaria de aporte de muestra FFPE	Volumen de tejido recomendado ≥1 mm³ de tejido Se necesita un contenido tumoral mínimo del 20 % (por área) para detectar mutaciones condicionantes somáticas, se necesita más de 30 % de contenido tumoral para detectar la MSI alta
N.º de portaobjetos de biopsia	Se recomienda un mínimo de 5 (secciones de 10 µM, 20 mm² de área de tejido cada una)
Duración total del ensayo	4-5 días desde el ácido nucleico hasta el informe clínico
Límite de detección	Véase el Apéndice
Falsos positivos por tipo de variante de ADN	Amplificaciones génicas, 0 % Variantes de ADN pequeñas, 0,0001 % MSI, 0 % TMB, N/A
	Fusiones de ARN, 0 %

Creación de perfiles de biomarcadores completos

Las pruebas de un solo gen y los paneles de puntos de mayor riesgo oncológico selectivos están limitados en el número de objetivos que analizan y el tipo de variantes que pueden detectar. La CGP con TSO Comprehensive (EU) supera estas limitaciones de contenido y analiza simultáneamente 517 genes con asociaciones conocidas con el cáncer a través de más de 28 tipos de tumores sólidos en un solo ensayo (Tablas 2-4). La prueba realiza llamadas de múltiples tipos de variantes de ADN y ARN, incluidas variantes de nucleótido único (SNV, Single Nucleotide Variants), variantes de nucleótido múltiple (MNV, Multiple Nucleotide Variants), inserciones/deleciones (indels), amplificaciones génicas, fusiones y variantes alternativas de corte y empalme (Figura 2). Además, la prueba detecta biomarcadores de inmunoterapia emergentes (es decir, TMB⁷ e inestabilidad de microsatélites (MSI, MicroSatellite Instability)8-10). El contenido proporciona una cobertura significativa de las guías clave para múltiples tipos de tumores y genes relacionados con los ensayos clínicos (Figura 3, Tabla 5). La naturaleza inclusiva de TSO Comprehensive (EU) maximiza las posibilidades de encontrar un biomarcador positivo.

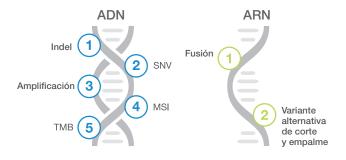


Figura 2: tipos de variantes y firmas genómicas detectadas por TSO Comprehensive (EU)

Indicaciones de pruebas diagnósticas acompañantes

Illumina ha establecido múltiples asociaciones con varias empresas farmacéuticas para desarrollar una creciente variedad de indicaciones de pruebas diagnósticas acompañantes (CDx). Esta información ayudará a identificar a los pacientes que probablemente respondan a tratamientos específicos. TSO Comprehensive (EU) está actualmente indicado como una prueba de CDx para identificar pacientes con cáncer con tumores sólidos que son positivos para fusiones génicas de NTRK1, NTRK2 o NTRK3 para el tratamiento con VITRAKVI (larotrectinib) según la ficha técnica terapéutica aprobada. 11-13 Se incluirán indicaciones de CDx adicionales, actualmente en desarrollo, una vez que reciban las aprobaciones normativas adecuadas (Tabla 6).

Tabla 2: Contenido de ADN incluido en TSO Comprehensive (EU)

ABL1	BRCA2	CTNNB1	EWSR1	GATA1	IDH2	MAP3K13	NOTCH3	PNRC1	RPS6KA4	STK40
ABL2	BRD4	CUL3	EZH2	GATA2	IFNGR1	MAP3K14	NOTCH4	POLD1	RPS6KB1	SUFU
ACVR1	BRIP1	CUX1	FAM123B	GATA3	IGF1	MAP3K4	NPM1	POLE	RPS6KB2	SUZ12
ACVR1B	BTG1	CXCR4	FAM175A	GATA4	IGF1R	MAPK1	NRAS	PPARG	RPTOR	SYK
AKT1	ВТК	CYLD	FAM46C	GATA6	IGF2	МАРК3	NRG1	PPM1D	RUNX1	TAF1
AKT2	C11orf30	DAXX	FANCA	GEN1	IKBKE	MAX	NSD1	PPP2R1A	RUNX1T1	TBX3
AKT3	CALR	DCUN1D1	FANCC	GID4	IKZF1	MCL1	NTRK1	PPP2R2A	RYBP	TCEB1
ALK	CARD11	DDR2	FANCD2	GLI1	IL10	MDC1	NTRK2	PPP6C	SDHA	TCF3
ALOX12B	CASP8	DDX41	FANCE	GNA11	IL7R	MDM2	NTRK3	PRDM1	SDHAF2	TCF7L2
ANKRD11	CBFB	DHX15	FANCF	GNA13	INHA	MDM4	NUP93	PREX2	SDHB	TERC
ANKRD26	CBL	DICER1	FANCG	GNAQ	INHBA	MED12	NUTM1	PRKAR1A	SDHC	TERT
APC	CCND1	DIS3	FANCI	GNAS	INPP4A	MEF2B	PAK1	PRKCI	SDHD	TET1
AR	CCND2	DNAJB1	FANCL	GPR124	INPP4B	MEN1	PAK3	PRKDC	SETBP1	TET2
ARAF	CCND3	DNMT1	FAS	GPS2	INSR	MET	PAK7	PRSS8	SETD2	TFE3
ARFRP1	CCNE1	DNMT3A	FAT1	GREM1	IRF2	MGA	PALB2	PTCH1	SF3B1	TFRC
ARID1A	CD274	DNMT3B	FBXW7	GRIN2A	IRF4	MITF	PARK2	PTEN	SH2B3	TGFBR1
ARID1B	CD276	DOT1L	FGF1	GRM3	IRS1	MLH1	PARP1	PTPN11	SH2D1A	TGFBR2
ARID2	CD74	E2F3	FGF10	GSK3B	IRS2	MLL/KMT2A	PAX3	PTPRD	SHQ1	TMEM12
ARID5B	CD79A	EED	FGF14	H3F3A	JAK1	MLLT3	PAX5	PTPRS	SLIT2	TMPRSS.
ASXL1	CD79B	EGFL7	FGF19	H3F3B	JAK2	MPL	PAX7	PTPRT	SLX4	TNFAIPS
ASXL2	CDC73	EGFR	FGF2	H3F3C	JAK3	MRE11A	PAX8	QKI	SMAD2	TNFRSF1
ATM	CDH1	EIF1AX	FGF23	HGF	JUN	MSH2	PBRM1	RAB35	SMAD3	TOP1
ATR	CDK12	EIF4A2	FGF3	HIST1H1C	KAT6A	MSH3	PDCD1	RAC1	SMAD4	TOP2A
ATRX	CDK4	EIF4E	FGF4	HIST1H2BD	KDM5A	MSH6	PDCD1LG2	RAD21	SMARCA4	TP53
AURKA	CDK6	EML4	FGF5	HIST1H3A	KDM5C	MST1	PDGFRA	RAD50	SMARCB1	TP63
AURKB	CDK8	EP300	FGF6	HIST1H3B	KDM6A	MST1R	PDGFRB	RAD50	SMARCD1	TRAF2
AXIN1	CDKN1A	EPCAM	FGF7	HIST1H3C	KDR	MTOR	PDK1	RAD51B	SMC1A	TRAF7
AXIN2	CDKN1B	EPHA3	FGF8	HIST1H3D	KEAP1	MUTYH	PDPK1	RAD51C	SMC3	TSC1
AXL	CDKN1B CDKN2A	EPHA5	FGF9	HIST1H3E	KEL	MYB	PGR	RAD51D	SMO	TSC2
B2M	CDKN2A CDKN2B	EPHA7	FGFR1	HIST1H3F	KIF5B	MYC	PHF6	RAD51D	SNCAIP	TSHR
BAP1	CDKN2C	EPHB1	FGFR2	HIST1H3G	KIT	MYCL1	PHOX2B	RAD54L	SOCS1	U2AF1
BARD1	CEBPA	ERBB2	FGFR3	HIST1H3H	KLF4	MYCN	PIK3C2B	RAF1	SOX10	VEGFA
BBC3	CENPA	ERBB3	FGFR4	HIST1H3I	KLHL6	MYD88	PIK3C2G	RANBP2	SOX17	VHL
BCL10	CHD2	ERBB4	FH	HIST1H3J	KRAS	MYOD1	PIK3C3	RARA	SOX2	VTCN1
BCL2	CHD4	ERCC1	FLCN	HIST2H3A	LAMP1	NAB2	PIK3CA	RASA1	SOX9	WISP3
BCL2L1	CHEK1	ERCC2	FLI1	HIST2H3C	LATS1	NBN	PIK3CB	RB1	SPEN	WT1
BCL2L11	CHEK2	ERCC3	FLT1	HIST2H3D	LATS2	NCOA3	PIK3CD	RBM10	SPOP	XIAP
BCL2L2	CIC	ERCC4	FLT3	HIST3H3	LMO1	NCOR1	PIK3CG	RECQL4	SPTA1	XPO1
BCL6	CREBBP	ERCC5	FLT4	HNF1A	LRP1B	NEGR1	PIK3R1	REL	SRC	XRCC2
BCOR	CRKL	ERG	FOXA1	HNRNPK	LYN	NF1	PIK3R2	RET	SRSF2	YAP1
BCORL1	CRLF2	ERRFI1	FOXL2	HOXB13	LZTR1	NF2	PIK3R3	RFWD2	STAG1	YES1
BCR	CSF1R	ESR1	FOXO1	HRAS	MAGI2	NFE2L2	PIM1	RHEB	STAG2	ZBTB2
BIRC3	CSF3R	ETS1	FOXP1	HSD3B1	MALT1	NFKBIA	PLCG2	RHOA	STAT3	ZBTB7A
BLM	CSNK1A1	ETV1	FRS2	HSP90AA1	MAP2K1	NKX2-1	PLK2	RICTOR	STAT4	ZFHX3
BMPR1A	CTCF	ETV4	FUBP1	ICOSLG	MAP2K2	NKX3-1	PMAIP1	RIT1	STAT5A	ZNF217
BRAF	CTLA4	ETV5	FYN	ID3	MAP2K4	NOTCH1	PMS1	RNF43	STAT5B	ZNF703
BRCA1	CTNNA1	ETV6	GABRA6	IDH1	MAP3K1	NOTCH2	PMS2	ROS1	STK11	ZRSR2

	T	odos los	s cánce	eres: <i>BR</i>	AF, NT	RK1, NT	RK2, N	TRK3, R	RET, MS	I, TMB			
Genes con biomarcadores de importancia clínica*									Genes con biomarcado- res de posible importancia clínica †				
	Mama	BRCA1	BRCA2	ERBB2	ESR1	PALB2	PIK3CA						180
剛	Colorrectal	ERBB2	KRAS	NRAS									166
	Óseo	EGFR MDM2	ERG NCOA2	ETV1 SMARCB1	ETV4	EWSR1	VEF	FLI1	FUS	НЗГЗА	HEY1	IDH1	140
do	Pulmón	ALK	EGFR	ERBB2	KRAS	MET	NUTM1	ROS1					223
	Melanoma	KIT	NRAS	ROS1									172
લ્લા	Ovárico	BRCA1	BRCA2	FOXL2									149
1/4	SNC‡	APC	ATRX	CDKN2A	CDKN2B	EGFR	H3F3A	HIST1H3B	HIST1H3C	IDH1	IDH2	MYCN	140
		PTCH1	RELA	TERT	TP53								
	Próstata	AR FGFR3	ATM PALB2	BARD1 PTEN	BRCA1 RAD51B	BRCA2 RAD51C	BRIP1 RAD51D	CDK12 RAD54L	CHEK1	CHEK2	FANCL	FGFR2	151
	Tiroides	HRAS	KRAS	NRAS	TERT								165
200	Uterino y	BRCA2	EPC1	ERBB2	ESR1	FOXO1	GREB1	JAZF1	NCOA2	NCOA3	NUTM2A	NUTM2B	
(cb)	cervico- uterino	PAX3	PAX7	PHF1	POLE	SMARCA4	SUZ12	TP53	YWHAE				138
		ALK	APC	ARID1A	ASPSCR1	ATF1	ATIC	BAP1	BCOR	BRCA1	BRCA2	CAMTA1	
		CARS	CCNB3	CDK4	CDKN2A	CIC	CITED2	CLTC	COL1A1	COL6A3	CREB1	CREB3L1	
		CREB3L2	CSF1	CTNNB1	DDIT3	DDX3X	DNAJB1	DUX4	EED	EGFR	ERBB2	ERG	
ورزين		ETV1	ETV4	ETV6	EWSR1	VEF	FGFR2	FGFR3	FLI1	FOXL2	FOXO1	FOXO4	
E.S	Otros tumores	FUS	GLI1	HEY1	HGF	HMGA2	IDH1	KRAS	LEUTX	MAML3	MDM2	MYB	152
	sólidos	MYOD1	NAB2	NCOA2	NF1	NFATC2	NFIB	NR4A3	NRAS	NUTM1	NUTM2A	NUTM2B	
		PALB2	PATZ1	PAX3	PAX7	PDGFB	PDGFRA	PRKACA	PRKD1	RANBP2	ROS1	SDHA	
		SDHB	SDHC	SDHD	SMARCB1		SSX1	SSX2	SSX4	STAT6	SUZ12	TAF15	
		TCF12	TERT	TFE3	TFEB	TFG	TP53	ТРМ3	TPM4	TRAF7	TSPAN31	VGLL2	
		WT1	WWTR1	YAP1	YWHAE	ZC3H7B							

Figura 3: genes con biomarcadores de utilidad clave para múltiples tipos de tumores sólidos: los genes enumerados representan un subconjunto de genes presentes en el panel de TSO Comprehensive (EU). Análisis de contenido proporcionado por Pierian basado en la base de conocimientos del software de DIV v8.5 (febrero de 2023).

^{*} Genes vinculados a las fichas técnicas o guías actuales de los medicamentos.

[†] Basado en las pruebas de la bibliografía científica, la presencia en ensayos clínicos o vinculado a las etiquetas en otras histologías. ‡ SNC, sistema nervioso central.

Tabla 3: Contenido de ARN incluido en TSO Comprehensive (EU)

ALK	BRAF	ERG	ETV4	FGFR3	NTRK1	PAX3	ROS1
AXL	EGFR	ESR1	FGFR1	KIF5B	NTRK2	RAF1	TMPRSS2
BCL2	EML4	ETV1	FGFR2	NRG1	NTRK3	RET	

Los genes enumerados se evalúan con relación a las fusiones conocidas y nuevas.

Tabla 4: variantes alternativas de corte y empalme incluidas en TSO Comprehensive (EU)

EGFR MET

Tabla 5: cobertura de contenido de TSO Comprehensive (EU)

49 directrices de práctica clínica
117 fichas técnicas de medicamentos
~680 ensayos clínicos europeos

Análisis proporcionado por Pierian basado en la base de conocimientos del software TSO Comprehensive (EU). Actualizado a febrero de 2023.


Tabla 6: Indicaciones de CDx

Indicación de CDx	Socio
tumores sólidos positivos para fusiones génicas de <i>NTRK1</i> , <i>NTRK2</i> o <i>NTRK3</i> para el tratamiento con VITRAKVI (larotrectinib)	Bayer ¹¹⁻¹³
En desarrollo	
NTRK	Roche ¹⁴
RET	Eli Lilly ¹¹
ROS1	Roche ¹⁴
EGFR	Desarrollo interno
HRD	Myriad Genetics, Merck ^{15,16}
HRAS	Kura Oncology ¹⁵
MSI	Bristol Myers Squibb ¹⁵

Los desarrollos de CDx se aplican a la gama de soluciones de TSO Comprehensive (EU). La disponibilidad de cada CDx variará según donde se encuentre y se basa en plazos variables para la aprobación de tratamientos y pruebas por región.

Más información, menos muestras, menos tiempo

TSO Comprehensive (EU) proporciona más información con menos muestras y en menos tiempo en comparación con los métodos de prueba iterativos actuales. Por ejemplo, un posible proceso para un paciente diagnosticado de carcinoma broncopulmonar no microcítico (CPNM) siguiendo los métodos de prueba convencionales podría implicar seis pruebas diferentes, que requerirían 29 portaobjetos de muestra y más de 42 días para obtener los resultados relativos a nueve biomarcadores, seguidos del tiempo de análisis e interpretación para desarrollar un plan de tratamiento.¹⁷⁻²² Por el contrario, una prueba de CGP que use TSO Comprehensive (EU) requiere normalmente cinco portaobjetos y hasta cinco días para generar un informe de utilidad con información sobre más de 500 biomarcadores y posibles tratamientos y ensayos clínicos (Figura 4).

- † No incluye ningún portaobietos necesario para la tinción de H&E u otro diagnóstico inicial
- ‡ No incluye biomarcadores más nuevos, como NTRK, TMB, MSI

Figura 4: ventajas de TSO Comprehensive (EU) en comparación con las pruebas iterativas: ejemplo que muestra los posibles procesos de un paciente con CPNM. La CGP con TSO Comprehensive (EU) proporciona una cobertura sustancialmente mayor en menos tiempo y con menos muestras en comparación con las pruebas iterativas de un solo gen.¹⁷⁻²²

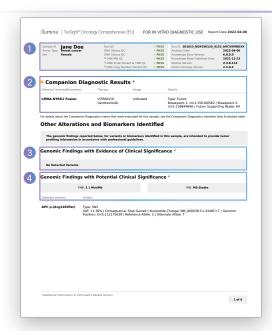
Un informe clínico fácil de leer y de utilidad

Los resultados de TSO Comprehensive (EU), respaldados por una base de conocimientos seleccionada por expertos se presentan en un informe único, optimizado y de utilidad. No hay necesidad de efectuar una búsqueda en múltiples informes de pruebas realizadas durante un período de tiempo en un intento de identificar variantes significativas. El informe de TSO Comprehensive (EU) usa un sistema de clasificación para clasificar las variantes según el nivel de relevancia clínica y puede ayudar a informar sobre las decisiones de tratamiento de acuerdo con las guías clínicas (Figura 5). El informe final incluye:

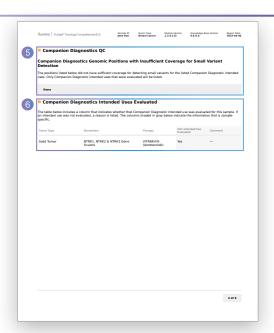
- Información de la muestra del paciente: ID de la muestra, tipo de tumor, sexo, análisis de control de la calidad, ID del experimento y detalles de la base de conocimientos
- Resultados de la prueba diagnóstica acompañante: variantes o biomarcadores detectados que tienen un uso previsto de prueba diagnóstica acompañante evaluado para la muestra
- Hallazgos genómicos con pruebas de importancia clínica: variantes detectadas que tienen pruebas de importancia clínica (terapéutica, pronóstica o diagnóstica) según la información de las fichas técnicas de los medicamentos aprobados por la FDA (Food and Drug Administration), las fichas técnicas de los medicamentos aprobados por la EMA (Agencia Europea de Medicamentos), las Guías de la NCCN (National Comprehensive Cancer Network), las Guías de Práctica Clínica de la ASCO (American Society of Clinical Oncology) o las Guías de Práctica Clínica de la ESMO (European Society for Medical Oncology) para el tipo de tumor del paciente, según lo especificado por la base de conocimientos23*
- Hallazgos genómicos de posible importancia clínica: variantes detectadas que tienen posible importancia clínica (terapéutica, pronóstica o diagnóstica) según la información de las fichas técnicas de los medicamentos aprobados por la FDA, las fichas técnicas de los medicamentos aprobados por la EMA, las Guías de Práctica Clínica de la NCCN, las Guías de Práctica Clínica de la ASCO o las Guías de Práctica Clínica de la ESMO en otro tipo de tumor, que cumplen con los criterios de elegibilidad genómica y de tipo de tumor para un ensayo clínico o que tienen pruebas de posible importancia clínica en la bibliografía principal en cuanto al tipo de tumor del paciente, según lo especificado por la base de conocimientos y el motor de reglas de apoyo23°

Solución validada

TSO Comprehensive (EU) es una prueba de CGP validada, desde la toma de la muestra hasta obtener respuestas, que incluye reactivos en kit, un sistema de secuenciación (Tabla 7) y software de análisis. Esta prueba se desarrolló usando un proceso de control de diseño riguroso y se validó en más de 350 muestras únicas de FFPE y más de 55 tipos de tumor diferentes. Los resultados se compararon con métodos ortogonales para garantizar datos precisos, reproducibles y coherentes.


Uso de TSO Comprehensive (EU)

TSO Comprehensive (EU) proporciona un flujo de trabajo optimizado que abarca desde la entrada de muestras hasta la generación del informe clínico final. Después de un protocolo de preparación de librerías de 2 días, las muestras se cargan en una celda de flujo y en el sistema de secuenciación. El resto de la prueba está totalmente automatizado, lo que incluye la secuenciación, la llamada de variantes, la interpretación y la generación del informe. La prueba completa, desde la extracción del ácido nucleico hasta el informe clínico, se puede completar en tan solo 4 días (Figura 1).


Tabla 7: estudios de verificación que usan TSO Comprehensive (EU)

Estudios de exactitud y de reconducción clínica para la detección de fusión génica de NTRK1, NTRK2 y NTRK3	Estabilidad de las librerías
Exactitud analítica	Límite del blanco
Guardbanding del flujo de trabajo del ensayo	Límite de detección
Contaminación cruzada	Evaluación del kit de extracción de ácido nucleico
Evaluación de los controles externos	Estabilidad en tiempo real
Guardbanding de la valoración de entrada de ácido nucleico	Reproducibilidad
Sustancias interferentes	Estabilidad de tejido FFPE montado en un portaobjetos
Estabilidad durante el uso del kit	Precisión dentro del laboratorio
Estabilidad durante el transporte del kit	

ASCO, American Society of Clinical Oncology; EMA, Agencia Europea de Medicamentos; ESMO, European Society for Medical Oncology; FDA, Food and Drug Administration; NCCN, National Comprehensive Cancer Network

- Información de muestra del paciente
- Resultados de la prueba diagnóstica acompañante Variantes/biomarcadores de la prueba diagnóstica acompañante detectados e indicaciones de tratamiento asociadas
- Hallazgos genómicos con evidencias de importancia clínica
 - · Nombre de la variante y detalles genómicos
- Hallazgos genómicos con posible importancia clínica • Incluye TMB, MSI
 - Sample ID Tumor Type Module Version Knowledge State Version Report Date Isse Doe Breast cancer 2.3.6.113 6.8.6.0 2022-04-06 7
- Información de la prueba
 - Descripción de los hallazgos genómicos
 - Revisión de la base de conocimientos
 - Descripción de la variante
 - Limitaciones de la prueba

- CC de la prueba diagnóstica acompañante
 - · Posiciones con cobertura insuficiente para la detección de variantes pequeñas
- Usos previstos evaluados de la prueba diagnóstica acompañante
 - Incluye el tipo de tumor, los biomarcadores y el tratamiento elegible

- Información de la prueba, continuación
 - · Genes y variantes analizados

Figura 5: informe clínico de TSO Comprehensive: El informe recoge los resultados de la prueba diagnóstica acompañante y las variantes clasificadas como de interés clínico o de posible interés clínico basándose en una base de conocimiento seleccionada por expertos que incluye guías clínicas, fichas técnicas de medicamentos, ensayos clínicos y bibliografía revisada por expertos. El resultado, de fácil lectura, está pensado para aumentar la confianza en las decisiones de tratamiento.

Preparación de librerías

TSO Comprehensive (EU) puede usar ADN y ARN extraídos simultáneamente de la misma muestra como material de entrada. Si se utiliza ADN, la preparación de muestras empieza por recortar el ADN genómico (ADNg). Si se empieza con ARN, el primer paso será la transcripción inversa de la muestra para obtener el ADN complementario (ADNc). El ADNg recortado y el ADNc se convierten simultáneamente en librerías listas para la secuenciación.

Durante la preparación de librerías, se añaden identificadores moleculares únicos (UMI)²⁴ a los fragmentos de ADNg o ADNc. Estos UMI permiten la detección de variantes con una baja frecuencia alélica de variantes (VAF, Variant Allele Frequency) a la vez que suprimen errores, lo que proporciona una alta especificidad.

Enriquecimiento de librerías para centrar los esfuerzos

La preparación de las librerías se basa en un reconocido proceso químico de captura híbrida mediante sondas biotiniladas y bolas magnéticas recubiertas con estreptavidina, para purificar objetivos seleccionados de las librerías de ADN y de ARN. Las regiones de interés se hibridan con las sondas biotiniladas, se extraen por medios magnéticos y se eluyen para enriquecer la agrupación de librerías. El enriquecimiento basado en hibridación es una estrategia útil para analizar variantes genéticas específicas en una muestra determinada y permite realizar una secuenciación fiable de exomas o de un gran número de genes (p. ej., >50 genes).

El proceso químico de captura híbrida ofrece varias ventajas respecto a la secuenciación de amplicones, entre las que se incluyen la obtención de datos con menos artefactos y una menor pérdida y la capacidad para incorporar un mayor enriquecimiento del panel. Además, el proceso químico de captura híbrida es independiente de la fusión, lo que permite detectar y caracterizar fusiones conocidas y nuevas.

Secuencia con potencia de diagnóstico

Las librerías de TSO Comprehensive (EU) preparadas se secuencian en NextSeq 550Dx System (Figura 6). NextSeq 550Dx System es un instrumento de DIV con marcado CE que permite a los laboratorios clínicos desarrollar y realizar ensayos de DIV basados en NGS. NextSeg 550Dx System presenta:

- Una configuración bloqueada con control de cambios que permite a los laboratorios aprovechar las opciones de pruebas clínicas actuales y futuras
- Capacidades de alto rendimiento para ampliar las operaciones para estudios más grandes y detallados o aumentar el número de muestras de pacientes en el experimento
- Análisis flexibles que abarcan desde la secuenciación de pequeños paneles hasta aplicaciones de WGS y NGS en estudios de microarrays

Con los cartuchos de reactivos precargados, iniciar un experimento en el instrumento NextSeq 550Dx es tan fácil como descongelar, cargar y poner en marcha y se necesita un tiempo de participación activa de aproximadamente 30 minutos. La interfaz intuitiva permite a los usuarios trabajar con varias aplicaciones con un tiempo mínimo de capacitación o de configuración del instrumento. El instrumento NextSeq 550Dx puede proporcionar más de 90 Gb de datos de alta calidad, con más del 75 % de las bases secuenciadas con una puntuación de calidad de Q30 o superior en menos de 2 días.²⁵

Figura 6: NextSeq 550Dx System: desarrollado bajo control de diseño y fabricado siguiendo las guías de las buenas prácticas de fabricación (GMP, Good Manufacturing Practice), NextSeq 550Dx System (en modo Dx) respalda un flujo de trabajo de TSO Comprehensive (EU) totalmente automatizado desde la secuenciación hasta la generación del informe clínico final.

Productividad de los lotes de los pacientes

Gracias al uso de TSO Comprehensive (EU) con NextSeq 550Dx System, los laboratorios pueden procesar por lotes hasta siete muestras de pacientes[†] con dos controles por experimento de secuenciación en 4-5 días.

Llamada de variantes, interpretación y generación de informes

Todos los análisis de TSO Comprehensive (EU) se realizan automáticamente en NextSeg 550Dx System usando el módulo de análisis de TruSight Oncology Comprehensive (EU) de Local Run Manager. El módulo integrado en el instrumento facilita la configuración del experimento y realiza el análisis secundario de los resultados de la secuenciación, incluido el demultiplexado, la generación de archivos FASTQ, la alineación v la llamada de variantes:

- El demultiplexado separa datos de las librerías agrupadas en función de los índices de secuencia únicos que se añadieron durante el procedimiento de preparación de librerías.
- Los archivos intermedios FASTQ contienen las lecturas de secuenciación de cada muestra y las puntuaciones de calidad, excepto las lecturas de cualquier grupo que no haya superado el filtro.

[†] El número de muestras de pacientes varía según el número de controles analizados.

- Las lecturas de secuenciación se alinean frente a un genoma de referencia para identificar una relación entre las secuencias y se asigna una puntuación según las regiones de similitud; las lecturas alineadas se escriben en archivos en formato Binary Alignment Map (BAM).
- Se usan algoritmos independientes para las librerías generadas a partir de muestras de ADN y ARN para llamar variantes pequeñas de ADN, amplificaciones génicas, TMB y MSI, en el caso de las muestras de ADN, y fusiones y variantes alternativas de corte y empalme, en el caso de las muestras de ARN, con alta especificidad.

El módulo de software de análisis genera múltiples archivos intermedios, que incluyen métricas de secuenciación v archivos Variant Call Format (VCF), Los archivos VCF contienen información sobre las variantes que se encuentran en posiciones específicas de un genoma de referencia. Los criterios de medición de secuenciación y los archivos de salida individuales se generan para cada muestra.

El análisis terciario, también realizado por el módulo de análisis de TruSight Oncology Comprehensive de Local Run Manager, consiste en cálculos de TMB y MSI, la creación de perfiles tumorales de las variantes en dos niveles de importancia clínica y la generación de informes. Los resultados de las variantes interpretadas, así como los resultados de los biomarcadores de TMB y MSI, se resumen en el informe de resultados de TruSight Oncology Comprehensive. Los médicos pueden usar el informe clínicamente útil para ayudar a informar sobre decisiones de tratamiento de acuerdo con las guías de práctica clínica, las fichas técnicas de los medicamentos y los ensayos clínicos.

Base de conocimientos clínicamente sólida

TSO Comprehensive (EU) Software está respaldado por un motor de reglas derivadas clínicamente y una base de conocimientos de diseño específico a lo largo del tiempo para maximizar la utilidad de los informes. El motor de reglas y la base de conocimientos respaldada, ambos proporcionados por Pierian,²⁶ comprenden una amplia cobertura de publicaciones revisadas por expertos, información sobre variantes procesables y las más recientes guías, fichas técnicas de medicamentos y ensayos clínicos (Tabla 8, Figura 7). TSO Comprehensive (EU) Software usa este rico contenido para determinar las clasificaciones de las variantes genéticas detectadas.

Contenido y motor de reglas seleccionados por expertos

A fin de ofrecer interpretaciones precisas de las variantes detectadas, la base de conocimientos se basa en un motor de reglas (ambas proporcionadas por Pierian) que relaciona variantes o biomarcadores específicos con

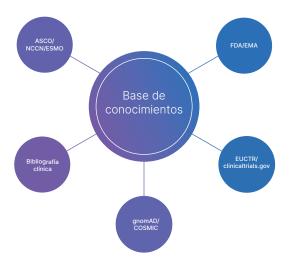


Figura 7: creación de la base de conocimientos: el software TSO Comprehensive (EU) Tumor Profiling está diseñado sobre una base de reglas ampliamente revisadas. Las reglas de origen, derivadas de las guías de práctica clínica, las fichas técnicas de los medicamentos y la bibliografía principal identifican y clasifican las variantes de utilidad. Los datos de los ensayos clínicos y las bases de datos de anotaciones biológicas son fuentes independientes y autónomas en la base de conocimientos.

afirmaciones de impacto clínico en diversos tipos de tumores. Estas afirmaciones proceden de diversas fuentes clínicas, incluidas guías de práctica clínica (es decir, NCCN, ASCO, ESMO), fichas técnicas de medicamentos aprobados (FDA, EMA), registros de ensayos clínicos (clincialtrials.gov, EUCTR), la bibliografía principal que describe los estudios clínicos (PubMed) y bases de datos de anotaciones biológicas (gnomAD, COSMIC)[‡] y pueden tener asociaciones terapéuticas, de pronóstico o de diagnóstico.

Un equipo de científicos altamente cualificados se encarga de seleccionar las pruebas que respaldan estas afirmaciones, conocidas como reglas de origen y las somete a una exhaustiva revisión siguiendo estrictos procedimientos. Después de esta revisión, las reglas de origen se examinan de nuevo en un proceso de control de la calidad/aseguramiento de la calidad del conjunto de reglas para garantizar la integridad de las actualizaciones de las reglas y que todos los campos requeridos se rellenen correctamente. A continuación, las reglas de origen se revisan, clasifican y seleccionan en función de su relevancia para un hallazgo genómico para

[‡] ASCO, American Society of Clinical Oncology; COSMIC, Catalogue of Somatic Mutations In Cancer; EMA, Agencia Europea de Medicamentos; ESMO, European Society for Medical Oncology; EUCTR, European Clinical Trials Registry; FDA, Food and Drug Administration; gnomAD, Genome Aggregation Database.

Tabla 8: Datos de la base de conocimientos a fecha de marzo de 2023ª

Tema	Según las cifras
Fichas técnicas de medicamentos	Más de 300 fichas técnicas revisadas Más de 13 000 páginas leídas
Guías	Más de 300 guías de práctica oncológica revisadas, cada una de ellas actualizada varias veces al año Más de 20 000 páginas leídas
Bibliografía publicada	Más de 100 000 documentos revisados Más de 500 000 páginas leídas
Ensayos clínicos	Más de 81 000 ensayos revisados
Cumplimiento de los dispositivos	Más de 6300 procedimientos, instrucciones de trabajo, formularios y registros revisados Más de 65 000 páginas leídas

a. Pierían actualiza el contenido mensualmente para incorporar las últimas. publicaciones, descubrimientos de biomarcadores, guías, fichas técnicas de medicamentos y ensayos clínicos.23

desarrollar reglas de interpretación. Los párrafos de interpretación se elaboran a partir del contenido asociado a las reglas correspondientes y los párrafos incluyen también referencias al material de origen.

Existen procesos de prueba y garantía de calidad para garantizar que se añadan y mantengan contenidos de alta calidad en la base de conocimientos. Además de las revisiones descritas anteriormente, las afirmaciones clínicas se extraen usando flujos de trabajo independientes por parte de seleccionadores cualificados que no forman parte de los equipos de reglas de origen o de reglas de interpretación y se evalúa el rendimiento global del software de creación de perfiles tumorales y de la base de conocimientos para determinar su concordancia, especificidad y sensibilidad. La exactitud del contenido seleccionado se determina comparando las clasificaciones derivadas de los metadatos de la base de conocimientos y del software de creación de perfiles tumorales con las clasificaciones previamente informadas en el repositorio de datos clínicos de Pierian. La base de conocimientos se somete a una revisión periódica por parte de un panel de expertos de profesionales médicos, patólogos moleculares y oncólogos licenciados y colegiados.

Cada mes²³ se pone a disposición una base de conocimientos actualizada para dar cuenta de los nuevos biomarcadores; los cambios en las guías, las fichas técnicas de los medicamentos y los ensayos clínicos; y los estudios de investigación clínica recientemente publicados. Los proveedores de pruebas de DIV pueden acceder fácilmente a las publicaciones mensuales, maximizando su capacidad de extraer información de utilidad de esta prueba de CGP.

Rendimiento alto y fiable

Las características de rendimiento y la fiabilidad de TSO Comprehensive (EU) han sido ampliamente probadas para cumplir con los rigurosos requisitos del DIV. Las evaluaciones incluyeron un estudio de límite de blanco, estudios de límite de detección (LoD, Limit of Detection) para variantes de ADN y ARN, reproducibilidad y precisión analítica (Apéndice).13 Los estudios cualitativos entre múltiples operadores, instrumentos, lotes de reactivos y días mostraron una alta concordancia con una variación mínima.¹³ Para obtener información detallada sobre los estudios realizados, consulte las instrucciones de uso de TruSight Oncology Comprehensive (EU) de Illumina.¹³

Incorpore la CGP en su laboratorio

La CGP maximiza la capacidad de hallar biomarcadores útiles e informar sobre las opciones de tratamiento que tienen el potencial de mejorar los resultados de los pacientes. La CGP en su laboratorio le ayuda a:

- Ser un proveedor de medicina de precisión: implemente una prueba de última generación y genere resultados clínicamente útiles en 4-5 días con tasas reducidas de cantidad no suficiente (QNS, Quantity Not Sufficient) y tasas mejoradas de éxito de la prueba.
- Estar preparado para el futuro: mantenga el acceso a los archivos de datos sin procesar y vuelva a analizarlos a medida que se introduzcan nuevas guías, fichas técnicas de medicamentos y ensayos clínicos, lo que podría generar nuevos conocimientos útiles.
- Ser un socio de confianza: consulte a los oncólogos sobre las decisiones de tratamiento y participe en los comités moleculares para el estudio de tumores.

Implantación facilitada

La implantación de una prueba de CGP puede requerir mucho tiempo y esfuerzo. Gracias a la introducción de TSO Comprehensive (EU), Illumina ha abordado algunos de los mayores retos, optimizando el proceso. En primer lugar, una solución en kit para DIV con la certificación CE altamente validada:

- Reduce el tiempo y coste de implantación de la prueba en comparación con una prueba desarrollada en el laboratorio (LDT, Laboratory-Developed Test) (Figura 8)
- Acelera la CGP, que pasa de ser una propuesta «nueva» a una prueba rutinaria
- Proporciona una prueba conforme a la Directiva de diagnóstico in vitro (IVDD, In Vitro Diagnostic Directive) que está encaminada a cumplir con los requisitos de la Normativa de diagnóstico in vitro (IVDR, In Vitro Diagnostic Regulation), ayudando a los laboratorios a prepararse para cumplir con las guías normativas más estrictas.

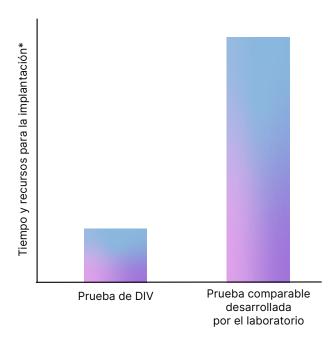


Figura 8: implantación de una prueba más sencilla y menos onerosa: TSO Comprehensive (EU) es una prueba de DIV con la certificación CE que solo requiere la verificación del rendimiento según la norma ISO 15189, lo que es menos oneroso que la validación requerida para una prueba desarrollada en el laboratorio * Ejemplo ilustrativo. No pretende ofrecer una comparación precisa del tiempo y los recursos.

Asistencia integral

Se dispone de un programa de asistencia integral que trabajará con los laboratorios para acelerar la implantación y la certificación y garantizar una integración sin problemas. El programa proporciona:

- Un plan de incorporación para acelerar la verificación de las pruebas
- Formación en el laboratorio, que incluye la instrucción en el laboratorio húmedo y la evaluación de los experimentos por parte del equipo de especialistas en aplicaciones de campo de Illumina
- Un protocolo de verificación
- Una certificación de cualificación
- Una asistencia técnica 24/5
- Asistencia continua del equipo de asuntos médicos de Illumina para consultas médicas

Además, Illumina proporciona a los usuarios del DIV acceso a activos de marketing y educativos listos para usar, para que los compartan con sus proveedores locales de atención sanitaria y les ayuden a comprender el valor de las pruebas de CGP.

Acceso al reembolso

La cobertura de las pruebas de CGP es una consideración importante a la hora de incorporar la capacidad en el centro. El reembolso difiere según el país, el entorno clínico y los servicios prestados. En la actualidad, algunos países europeos disponen de financiación nacional o regional (Figura 9). Illumina ha creado un equipo dedicado al acceso al mercado que está trabajando activamente con los pagadores para ampliar el reembolso de las pruebas de CGP en todo el mundo.

Analice las opciones de cobertura disponibles con su comercial local de Illumina.

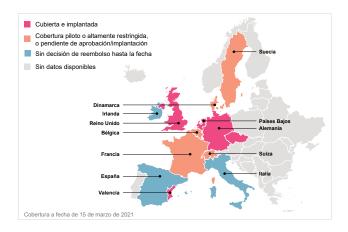


Figura 9: opciones de cobertura de las pruebas de CGP en Europa: datos actualizados a 15 de marzo de 2021.

Resumen

El uso de las pruebas de CGP está permitiendo mejorar los resultados de los pacientes. La implantación de las pruebas de CGP en su laboratorio se simplifica con TSO Comprehensive (EU). Esta prueba de CGP verificada ofrece un flujo de trabajo optimizado, reactivos validados y un software clínico automatizado que le permite pasar de la muestra al informe clínico en 4-5 días. Partiendo de ADN y ARN, use TSO Comprehensive (EU) para analizar múltiples tipos de variantes en más de 500 genes en una sola prueba. Elabore un informe final claro y clínicamente relevante que identifique con precisión las mutaciones de utilidad que se puedan usar para informar de las decisiones relativas a posibles tratamientos o ensayos clínicos compatibles, según fuentes reconocidas, que puedan mejorar el resultado de los pacientes.

Apéndice

Estudio de límite de blanco

Bajo número de falsos positivos para TSO Comprehensive (EU)

Parámetro	Valor
Falsos positivos para variantes pequeñas de ADN	0,0001 %
Falsos positivos para amplificaciones génicas	0 %
Falsos positivos para MSI	0 %
Falsos positivos para fusiones de ARN	0 %
Falsos positivos para variantes alternativas de corte y empalme de ARN	0 %

Los falsos positivos se evaluaron mediante un estudio de límite de blanco usando muestras de FFPE normales o benignas de tejido adyacente. No se analizaron los falsos positivos para determinar la TMB, ya que no existe ningún valor de umbral clínico.

Estudios de límite de detección (LoD)

LoD: variantes alternativas de corte y empalme

Variante alternativa de corte y empalme	LoD
MET	18,7
EGFR	24,8

Las muestras FFPE de 17 tipos de tejidos que contenían variantes se diluyeron a múltiples niveles de prueba. Se generaron seis observaciones por nivel por parte de dos operadores, usando cada una un lote de reactivos y un instrumento diferentes. El LoD se define como el valor más bajo del analito (por ejemplo, la frecuencia alélica de variantes o las lecturas de apoyo) que se puede detectar de forma sistemática (límite de detección del 95 % o un error de tipo II del 5 %).

LoD: fusiones y variantes alternativas de corte y empalme de ARN

Fusión	LoD
NCOA4-RET	10
TMPRSS2-ERG	13,2
KIF5B-RET	14,5
ACPP-ETV1	17,2
FGFR3-TACC3	17,5
EML4-ALK	20,2
FGFR1-GSR	23,7
EGFR-GALNT13	24
ESR1-CCDC170	24,3
FGFR2-SRPK2	24,7
HNRNPUL1-AXL	26,3
CD74-ROS1;GOPC	28,2
SPIDR-NRG1	28,2
RAF1-VGLL4	28,5
DHX8;ETV4-STAT3	30,5
MKRN1-BRAF	31,2
BCL2-IGHJ5	44,2
PAX3-FOXO1	54,7

Las muestras FFPE de 17 tipos de tejidos que contenían variantes se diluveron a múltiples niveles de prueba. Se generaron seis observaciones por nivel por parte de dos operadores, usando cada una un lote de reactivos y un instrumento diferentes. El LoD se define como el valor más bajo del analito (por ejemplo, la frecuencia alélica de variantes o las lecturas de apoyo) que se puede detectar de forma sistemática (límite de detección del 95 % o un error de tipo II del 5 %).

LoD: variantes de ADN pequeñas y amplificaciones génicas

Tipo (unidad de medida del LoD)	Clase de variantes/ contenido genómico	N.º de variantes	Intervalo
	SNV	5	0,016-0,064
	MNV	3	0,022-0,048
	Inserción (1-2 pb) cerca de las repeticiones de homopolímero	2	0,086-0,104
	Inserción (1-2 pb) cerca de las repeticiones de dinucleótido	2	0,038-0,051
Variantes pequeñas de ADN	Inserción (3-5 pb)	2	0,030-0,056
(frecuencia de variantes alélicas)	Inserción (>5 pb y hasta 25 pb)	3	0,034-0,215
	Deleción (1-2 pb) cerca de las repeticiones de homopolímero	2	0,094-0,100
	Deleción (1-2 pb) cerca de las repeticiones de dinucleótido	2	0,033-0,070
	Deleción (3-5 pb)	2	0,028-0,064
	Deleción (>5 pb y hasta 25 pb)	2	0,047-0,055
Amplificaciones génicas (múltiplo de cambio)	Según el gen (ERBB2, MET)	2	2,034-2,195

Las muestras FFPE de 17 tipos de tejidos que contenían variantes se diluyeron a múltiples niveles de prueba. Se generaron seis observaciones por nivel por parte de dos operadores, usando cada una un lote de reactivos y un instrumento diferentes. El LoD se define como el valor más bajo del analito (por ejemplo, la frecuencia alélica de variantes o las lecturas de apovo) que se puede detectar de forma sistemática (límite de detección del 95 % o un error de tipo II del 5 %).

Reproducibilidad para los estudios de creación de perfiles tumorales

Reproducibilidad para la creación de perfiles tumorales: amplificaciones génicas

Gen de interés	Múltiplo de cambio medioª	PPC	IC del 95 %⁵
MET	5,14	100,0 %	92,6 %, 100,0 %
ERBB2	2,33	100,0 %	92,4 %, 100,0 %

La reproducibilidad se probó en tres centros (uno interno y dos externos), dos operadores por centro, tres lotes de reactivos, cuatro días de pruebas y diversos experimentos de secuenciación por librería usando 41 muestras de tejido FFPE y una línea celular. PPC, porcentaje de llamadas positivas; IC, intervalo de confianza

Reproducibilidad para la creación de perfiles tumorales: MSI

Elemento del panel	Media de la puntuación de MSIª	PPC	IC del 95 % ^b
TPSBD4	60,5	100,0 % (36/36)	90,4 %, 100.0 %
TPSBD6	55,7	100,0 % (32/32)	89,3 %, 100,0 %
Todos los elementos		100,0 % (68/68)	94,7 %, 100,0 %

La reproducibilidad se probó en tres centros (uno interno y dos externos). dos operadores por centro, tres lotes de reactivos, cuatro días de pruebas y diversos experimentos de secuenciación por librería usando 41 muestras de tejido FFPE y una línea celular. PPC, porcentaje de llamadas positivas; IC, intervalo de confianza

a. Múltiplo del cambio medio calculado a partir de los resultados de ensayo observados

b. IC bilateral del 95 % calculado mediante el método de puntuación de Wilson

a. Puntuación de MSI media calculada a partir de los resultados de ensayo observados

b. IC bilateral del 95 % calculado mediante el método de puntuación de Wilson.

Reproducibilidad para la creación de perfiles tumorales: variantes de ADN pequeñas

Gen	Tipo de variante	Variante de interés (aminoácido)	Media de la VAFª	PPC	IC del 95 % ^b
APC	Deleción	L1488fsTer19	0,181	100,0 % (28/28)	87,9 %, 100,0 %
APC	Deleción	S1465WfsTer3	0,166	100,0 % (40/40)	91,2 %, 100,0 %
APC	Inserción	T1556NfsTer3	0,227	100,0 % (32/32)	89,3 %, 100,0 %
APC	Inserción	S1465fs*9	0,100	100,0 % (48/48)	92,6 %, 100,0 %
ARID1A	Inserción	Q372fs*28	0,084	100,0 % (4/4)	51,0 %, 100,0 %
BRAF	SNV	V600E	0,045	91,3 % (42/46)	79,7 %, 96,6 %
EGFR	Deleción	E746_A750del	0,112	100,0 % (46/46)	92,3 %, 100,0 %
EGFR	SNV	L858R	0,045	100,0 % (38/38)	90,8 %, 100,0 %
EP300	Deleción	H2324fs*29	0,245	100,0 % (44/44)	92,0 %, 100,0 %
ERBB2	Inserción	Y772_A775dup	0,075	100,0 % (36/36)	90,4 %, 100,0 %
IDH1	SNV	R132H	0,155	100,0 % (36/36)	90,4 %, 100,0 %
KRAS	MNV	G12I	0,111	100,0 % (38/38)	90,8 %, 100,0 %
NOTCH1	Inserción	R1598fs*12	0,146	100,0 % (48/48)	92,6 %, 100,0 %
PTEN	Deleción	T319fs*1	0,157	100,0 % (44/44)	92,0 %, 100,0 %
TP53	Inserción	P152_P153dup	0,157	100,0 % (2/2)	34,2 %, 100,0 %
TP53	Inserción	R333HfsTer5	0,154	100,0 % (48/48)	92,6 %, 100,0 %

La reproducibilidad se probó en tres centros (uno interno y dos externos), dos operadores por centro, tres lotes de reactivos, cuatro días de pruebas y diversos experimentos de secuenciación por librería usando 41 muestras de tejido FFPE y una línea celular. VAF, frecuencia alélica de variantes; PPC, porcentaje de llamadas positivas; IC, intervalo de confianza

a. VAF media calculada a partir de los resultados de ensayo observados

b. IC bilateral del 95 % calculado mediante el método de puntuación de Wilson.

Reproducibilidad para la creación de perfiles tumorales: variantes de ARN

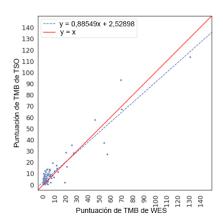
Variante de interés	Tipo de variante	Media de las lecturas de apoyo	PPC	IC del 95 %⁵
ACPP-ETV1	Fusión	44,7	100,0 % (46/46)	92,3 %, 100,0 %
BCL2-IGHJ5	Fusión	124,9	100,0 % (46/46)	92,3 %, 100,0 %
CD74-ROS1;GOPC	Fusión	56,6	100,0 % (48/48)	92,6 %, 100,0 %
DHX8;ETV4-STAT3	Fusión	48,9	100,0 % (46/46)	92,3 %, 100,0 %
EGFR-GALNT13	Fusión	49,8	100,0 % (46/46)	92,3 %, 100,0 %
EML4-ALK	Fusión	49,3	100,0 % (48/48)	92,6 %, 100,0 %
ESR1-CCDC170	Fusión	45,1	100,0 % (46/46)	92,3 %, 100,0 %
FGFR1-GSR	Fusión	61,1	100,0 % (46/46)	92,3 %, 100,0 %
FGFR2-SRPK2	Fusión	53,4	100,0 % (48/48)	92,6 %, 100,0 %
FGFR3-TACC3	Fusión	53,5	100,0 % (48/48)	92,6 %, 100,0 %
HNRNPUL1-AXL	Fusión	58,0	100,0 % (48/48)	92,6 %, 100,0 %
KIF5B-RET	Fusión	11,6	91,7 % (44/48)	80,4 %, 96,7 %
MKRN1-BRAF	Fusión	33,4	100,0 % (48/48)	92,6 %, 100,0 %
PAX3-FOXO1	Fusión	70,1	100,0 % (48/48)	92,6 %, 100,0 %
RAF1-VGLL4	Fusión	15,9	100,0 % (46/46)	92,3 %, 100,0 %
SPIDR-NRG1	Fusión	51,5	100,0 % (48/48)	92,6 %, 100,0 %
TMPRSS2-ERG	Fusión	43,5	97,9 % (47/48)	89,1 %, 99,6 %
EGFR VIII	Variante alternativa de corte y empalme	64,0	100,0 % (46/46)	92,3 %, 100,0 %
Omisión del exón 14 de MET	Variante alternativa de corte y empalme	61,2	100,0 % (48/48)	92,6 %, 100,0 %

La reproducibilidad se probó en tres centros (uno interno y dos externos), dos operadores por centro, tres lotes de reactivos, cuatro días de pruebas y diversos experimentos $de\ secuenciación\ por librer\'ia\ usando\ 41\ muestras\ de\ tejido\ FFPE\ y\ una\ l\'inea\ celular.\ El\ porcentaje\ de\ llamadas\ negativas\ (PNC)\ fue\ del 100\ \%\ para\ cada\ variante\ de\ ARN\ de\ para\ cada\ variante\ de\ para\ de\ para\ cada\ variante\ de\ para\ de\ para\ cada\ variante\ de\ para\ de\ para\ cada\ variante\ para\ cada\ variante\ para\ de\ para\ cada\ variante\ para\ cada\ c$ interés, excepto para la fusión FGFR2-SRPK2 (PNC = 99,60 % (984/988; IC del 95 %: del 98,96 % al 99,84 %). PPC, porcentaje de llamadas positivas; IC, intervalo de confianza a. Media de las lecturas de apoyo calculada a partir de los resultados del ensayo observados.

b. IC bilateral del 95 % calculado mediante el método de puntuación de Wilson.

Estudios de precisión analítica

Precisión analítica: variantes de ADN y MSI


Tipo de variante	Método ortogonal	PPA	NPA
Variantes de ADN pequeñas (somáticas)	WES	85 % (382/451) (IC del 95 %: 81 %-87 %)	99,999 % (70 000 481/70 000 907) (IC del 95 %: 99,999 %-99,999 %)
Variantes de ADN pequeñas (germinales)	WES	99,8 % (33 163/33 224) (IC del 95 %: 99,8 %-99,9 %)	99,999 % (70 000 481/70 000 907) (IC del 95 %: 99,999 %-99,999 %)
Amplificaciones génicas	WES	92 % (337/365) (IC del 95 %: 89 %, 95 %)	98,3 % (24 000/24 415) (IC del 95 %: 98,1 %, 98,5 %)
MSI	MSI-PCR	93 % (40/43) (IC del 95 %: 81 %, 98 %)	99 % (150/152) (IC del 95 %: 95 %, >99 %)

La capacidad de TSO Comprehensive (EU) para detectar alteraciones en cientos de muestras FFPE se comparó con los resultados obtenidos con el método de referencia indicado. Al menos el 48 % de las variantes somáticas detectadas por TSO Comprehensive (EU) no fueron detectadas por WES debido a que las frecuencias alélicas estaban por debajo del umbral de WES. Los datos de WES también mostraron pruebas de la presencia de variantes adicionales detectadas por TSO Comprehensive (EU), pero con poco apoyo de las llamadas de WES. Esto sugiere que estas variantes no se detectaron en el tumor mediante WES debido a la contaminación normal. NPA: concordancia porcentual negativa; PPA: concordancia porcentual positiva; WES: secuenciación del exoma completo

Precisión analítica: variantes de ARN

Tipo de variante	Método ortogonal	PPA	NPA
Fusiones	 Secuenciación del exoma completo de ARN (RNGS1) Panel de fusión de NGS selectiva (RNGS2) PCR digital por gota (ddPCR) 	82 % (63/77) (IC del 95 %: 72 %, 89 %)	99,9 % (13 821/13 839) (IC del 95 %: 99,8 %, 99,9 %)
Variantes alternativas de corte y empalme	qPCR	57 % (4/7) (IC del 95 %: 25 %, 84 %)	100 % (230/230) (IC del 95 %: 98 %, 100 %)

La capacidad de TSO Comprehensive (EU) para detectar alteraciones en cientos de muestras FFPE se comparó con los resultados obtenidos con el método de referencia indicado. TSO Comprehensive (EU) detectó 41 fusiones que no fueron detectadas mediante las estrategias ortogonales. El LoD de RNGS1 era de 4 a 8 veces mayor que el de TSO Comprehensive (EU), lo que hizo que se usaran métodos adicionales con mayor sensibilidad, pero con menos amplitud de fusiones. Se confirmaron otras 41 fusiones detectadas por TSO Comprehensive mediante ddPCR. Las puntuaciones de PPA y NPA de las fusiones representan un compuesto de los tres métodos ortogonales. Tres muestras fueron consideradas positivas en cuanto a las deleciones del exón 14 de MET por qPCR, pero no por TSO Comprehensive (EU) y tenían un Ct promedio superior a 37, a consideradas positivas en cuanto a las deleciones del exón 14 de MET por qPCR, pero no por TSO Comprehensive (EU) y tenían un Ct promedio superior a 37, a consideradas positivas en cuanto a las deleciones del exón 14 de MET por qPCR, pero no por TSO Comprehensive (EU) y tenían un Ct promedio superior a 37, a consideradas positivas en cuanto a las deleciones del exón 14 de MET por qPCR, pero no por TSO Comprehensive (EU) y tenían un Ct promedio superior a 37, a consideradas positivas en cuanto a las deleciones del exón 15 de MET por qPCR, pero no por TSO Comprehensive (EU) y tenían un Ct promedio superior a 37, a consideradas por consideradasque está por debajo del nivel de LoD de TSO Comprehensive (EU). NPA, concordancia porcentual negativa; PPA, concordancia porcentual positiva; RNGS, secuenciación de nueva generación de ARN

Precisión analítica (TMB): la capacidad de TSO Comprehensive (EU) para detectar la TMB en más de 100 muestras FFPE se comparó con los resultados logrados con la secuenciación del exoma completo (WES). Los resultados indican una correlación de Pearson de 0,94.

Información adicional

TruSight Oncology Comprehensive (EU), illumina.com/ tsocomprehensive

Creación de perfiles genómicos completos (CGP), illumina.com/cgp

NextSeq 550Dx System, illumina.com/nextseq550dx

Datos para realizar pedidos

Producto	N.º de catálogo
TruSight Oncology Comprehensive (EU) Kit	20063092
TruSight Oncology DNA Control	20065041
TruSight Oncology RNA Control	20065042
NextSeq 550Dx Instrument	20005715
NextSeq 550Dx High-Output Reagent Kit v2.5 (300 cycles) ^a	20028871

a. Los consumibles de secuenciación de clase Lse envían en un solo lote e incluyen pruebas de lote de kit, notificaciones previas a las modificaciones y un certificado de análisis en cada lote. Los reactivos se desarrollan conforme a principios de control del diseño, se fabrican conforme a las prácticas recomendadas de fabricación actuales y se verifican para garantizar el cumplimiento de las especificaciones.

Bibliografía

- 1. Zehir A, Benayed R, Shah RH, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients [la corrección publicada aparece en Nat Med. 4 de agosto de 2017;23 (8):1004]. Nat Med. 2017;23(6):703-713. doi:10.1038/nm.4333
- 2. Soumerai TE, Donoghue MTA, Bandlamudi C, et al. Clinical Utility of Prospective Molecular Characterization in Advanced Endometrial Cancer. Clin Cancer Res. 2018;24(23):5939-5947. doi:10.1158/1078-0432.CCR-18-0412
- 3. Gutierrez ME, Choi K, Lanman RB, et al. Genomic Profiling of Advanced Non-Small Cell Lung Cancer in Community Settings: Gaps and Opportunities. Clin Lung Cancer. 2017;18(6):651-659. doi:10.1016/j.cllc.2017.04.004
- 4. Singal G, Miller PG, Agarwala V, et al. Association of Patient Characteristics and Tumor Genomics With Clinical Outcomes Among Patients With Non-Small Cell Lung Cancer Using a Clinicogenomic Database [la corrección publicada aparece en JAMA. 4 de febrero de 2020;323(5):480]. JAMA. 2019;321(14):1391-1399. doi:10.1001/jama.2019.3241

- 5. Kato S, Kim KH, Lim HJ, et al. Real-world data from a molecular tumor board demonstrates improved outcomes with a precision N-of-One strategy. Nat Commun. 2020;11:4965 (2020). doi.org/10.1038/s41467-020-18613-3
- 6. Rozenblum AB, Ilouze M, Dudnik E, et al. Clinical Impact of Hybrid Capture-Based Next-Generation Sequencing on Changes in Treatment Decisions in Lung Cancer. J Thorac Oncol. 2017;12(2):258-268. doi:10.1016/j.jtho.2016.10.021
- 7. U.S. Food & Drug Administration. FDA approves pembrolizumab for adults and children with TMB-H solid tumors. Sitio web de la FDA. fda.gov/drugs/drug-approvalsand-databases/fda-approves-pembrolizumab-adults-andchildren-tmb-h-solid-tumors. Fecha de publicación: 17 de iunio de 2020. Fecha de consulta: 7 de octubre de 2020.
- 8. Tray N, Weber JS, Adams S. Predictive Biomarkers for Checkpoint Immunotherapy: Current Status and Challenges for Clinical Application. Cancer Immunol Res. 2018;6(10):1122-1128. doi:10.1158/2326-6066.CIR-18-0214
- 9. Samstein RM, Lee CH, Shoushtari AN, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51(2):202-206. doi.org/10.1038/s41588-018-0312-8
- 10. U.S. Food & Drug Administration. FDA Approves First-Line Immunotherapy for Patients with MSI-H/ bMMR Metastatic Colorectal Cancer. Sitio web de la FDA. fda.gov/news-events/press-announcements/fdaapproves-first-line-immunotherapy-patients-msi-hdmmrmetastatic-colorectal-cancer. Fecha de publicación: 29 de junio de 2020. Fecha de consulta: 7 de octubre de 2020.
- 11. Illumina and Loxo Oncology to Partner on Developing Next-Generation Sequencing-Based Pan-Cancer Companion Diagnostics. 2018. Disponible en https://www.businesswire.com/news/ home/20180410005649/en/. Fecha de publicación: 10 de abril de 2018. Fecha de consulta: 22 de febrero de 2021.
- 12. As Lilly deal closes, Bayer secures full rights to Loxo's Vitrakvi. 2019. Disponible en https://www.biopharmadive. com/news/as-lilly-deal-closes-bayer-secures-full-rights-toloxos-vitrakvi/548584/. Fecha de publicación: 15 de febrero de 2019. Fecha de consulta: 22 de febrero de 2021.
- 13. Illumina. Instrucciones de uso de TruSight Oncology Comprehensive Disponible en https://support.illumina. com/sequencing/sequencing_kits/trusight-oncologycomprehensive.html. Fecha de consulta: 25 de mayo de 2022.
- 14. Roche, Illumina Partner on Next-Generation Sequencing IVD, CDx Development, Marketing. 2020. Disponible en https:// www.genomeweb.com/business-news/roche-illuminapartner-next-generation-sequencing-ivd-cdx-developmentmarketing#.YWhVkhrMKUk. Fecha de publicación: 13 de enero de 2020. Fecha de consulta: 22 de febrero de 2021.
- 15. Illumina Announces New and Expanded Oncology Partnerships with Bristol Myers Squibb, Kura Oncology, Myriad Genetics, and Merck to Advance Comprehensive Genomic Profiling. 2021. Disponible en https://www.businesswire.com/news/home/20210111005930/ en/Illumina-Announces-New-and-Expanded-Oncology-

- Partnerships-with-Bristol-Myers-Squibb-Kura-Oncology-Myriad-Genetics-and-Merck-to-Advance-Comprehensive-Genomic-Profiling. Fecha de publicación: 11 de enero de 2021. Fecha de consulta: 22 de febrero de 2021.
- 16. Illumina Partners with Merck to Develop and Commercialize Companion Diagnostic and Research Tests for Use in Identifying Specific Cancer Mutations. 2021. Disponible en https://www.prnewswire.com/news-releases/illuminapartners-with-merck-to-develop-and-commercializecompanion-diagnostic-and-research-tests-for-use-inidentifying-specific-cancer-mutations-301369838.html. Fecha de publicación: 7 de septiembre de 2021. Fecha de consulta: 14 de octubre de 2021.
- 17. Mayo Clinic Laboratories. EGFRT Specimen: EGFR Gene, Mutation Analysis, 29 Mutation Panel, Tumor. Sitio web de Mayo Clinic Laboratories. https://www.mayocliniclabs.com/ test-catalog/Specimen/35404. Fecha de consulta: 9 de febrero de 2021.
- 18. ARUP Laboratories. EGFR Mutation Detection by PyroSequencing. Sitio web de ARUP Laboratories. https://ltd.aruplab.com/Tests/Pub/2002440. Fecha de consulta: 9 de febrero de 2021.
- 19. Abbott. Vysis ALK Break Apart FISH Probe Kit. Disponible en https://www.molecular.abbott/sal/en-us/staticAssets/ALK-US-CE-Clinical-PI_R3_mw001_3060.pdf. Fecha de consulta: 9 de febrero de 2021.
- 20. NeoGenomics Laboratories. MET Exon 14 Deletion Analysis NeoGenomics Laboratories. Sitio web de NeoGenomics Laboratories. https://neogenomics.com/test-menu/met-exon-14-deletion-analysis. Fecha de consulta: 9 de febrero de 2021.
- 21. Geisinger Medical Laboratories. Specimen collection and processing instructions for BRAF MUTATION ANALYSIS. Sitio web de Geisinger Medical Laboratories. https://www.geisingermedicallabs.com/catalog/details. cfm?tid=1740. Fecha de consulta: 9 de febrero de 2021.
- 22. Geisinger Medical Laboratories. Specimen collection and processing instructions for KRAS MUTATION ANALYSIS. Sitio web de Geisinger Medical Laboratories. https://www.geisingermedicallabs.com/catalog/details. cfm?tid=1638. Fecha de consulta: 9 de febrero de 2021.
- 23. Análisis proporcionado por cortesía de Pierian basado en la base de conocimientos de TSO Comprehensive (EU). Vigente a fecha de marzo de 2023.
- 24. Illumina. TruSight Oncology UMI Reagents. Sitio web de Illumina. https://www.illumina.com/content/dam/illuminamarketing/documents/products/datasheets/trusightoncology-umi-reagents-datasheet-100000050425.pdf. Fecha de consulta: 9 de febrero de 2021.
- 25. Illumina. NextSeq 550Dx Instrument. Disponible en https://science-docs.illumina.com/documents/Instruments/ nextseq-550dx-instrument-spec-sheet-1000000062591/ nextseq-550dx-instrument-spec-sheet-1000000062591.pdf. Fecha de consulta: 9 de febrero de 2021.
- 26. Pierian. Genomic Knowledge Base for Clinical Next-Generation Knowledge. Sitio web de Pierian. https://www.pieriandx.com/genomic-Knowledge Base. Fecha de consulta: 14 de marzo de 2021.

Declaración de uso previsto

TruSight Oncology Comprehensive (EU) es una prueba diagnóstica in vitro que usa la secuenciación de nueva generación selectiva para detectar variantes en 517 genes usando ácidos nucleicos extraídos de muestras de tejido tumoral fijado en formol y embebido en parafina (FFPE, Formalin-Fixed, Paraffin-Embedded) de pacientes oncológicos con neoplasias malignas sólidas con el instrumento Illumina® NextSeq[™] 550Dx. La prueba se puede utilizar para detectar variantes de nucleótido único (SNV, single nucleotide variant), variantes de nucleótidos múltiples (MNV, multi-nucleotide variant), inserciones, deleciones, y amplificaciones de genes a partir de ADN, y para detectar fusiones génicas y variantes alternativas de corte y empalme a partir de ARN. Con la prueba también se obtiene una puntuación de carga mutacional del tumor (TMB, Tumor Mutational Burden) y el estado de la inestabilidad de microsatélites (MSI, Microsatellite Instability).

La prueba está concebida como prueba diagnóstica acompañante para identificar pacientes con cáncer que puedan someterse al tratamiento selectivo citado en la Tabla 9, según el etiquetado del producto terapéutico aprobado. Además, la prueba está concebida para proporcionar información sobre los perfiles tumorales para su uso por parte de profesionales sanitarios cualificados de acuerdo con las guías profesionales y no es concluyente ni prescribe el uso autorizado recogido en la ficha técnica de ningún producto terapéutico específico.

Tabla 9: Indicación de la prueba diagnóstica acompañante

Tipo de tumor	Biomarcadores	Tratamiento selectivo
Tumores	Fusiones génicas NTRK1,	VITRAKVI
sólidos	NTRK2 y NTRK3	(larotrectinib)

1800 809 4566 (Ilamada gratuita, EE. UU.) | tel.: +1858 202 4566 techsupport@illumina.com | www.illumina.com

© 2023 Illumina, Inc. Todos los derechos reservados. Todas las marcas comerciales pertenecen a Illumina, Inc. o a sus respectivos propietarios. Si desea consultar información específica sobre las marcas comerciales, consulte www.illumina.com/company/legal.html. M-EMEA-00069 ESP v4.0